Research
forefronts and
open questions

Reconstructing transmission
with genomic data



Estimation of
serial intervals
using pathogen
genomic data

with an application to
COVID-19



Sometimes, our data
might not be sufficient to
fully reconstruct the
transmission tree

But that doesn’t mean
there’s nothing we can
learn...

We developed a method to
estimate serial intervals using
genomic data.



What is the serial interval?

Definition of the serial interval = length of time between successive cases in
a chain of transmission
= length of time between symptom
onset in an infector and infectee
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Why is the serial interval important?

R, = the average number of
cases caused by a single
infected individual, in a wholly

1 Tells us about the speed of transmission... susceptible population
R, =the average number of

- : cases caused by a single
1 ..this informs surveillance efforts. infected individual, at a specific

1 Used to calculate quantities like R, R, ...

R0%1_|_7”S

1 ...and hence in understanding herd immunity thresholds and more.

How generation intervals shape the relationship
between growth rates and reproductive numbers
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https://royalsocietypublishing.org/doi/10.1098/rspb.2006.3754
https://royalsocietypublishing.org/doi/10.1098/rspb.2006.3754

It’s also related to other disease intervals

Generation time

- _
Incubation period  Time to transmit i
—p «—>
infected symptoms recovered
A ...... [ 3
Infectious period
<4 -
B | n n |} |} n n n n |} |} n n n n i lllllllll . . .
! infected symptoms recovered
T - =

Serial interval



Most existing methods for serial interval estimation
assume direct observation of transmission pairs
(infectors & infectees)

pairs of cases which
<« 5 -

are assumed to represent direct
transmission

symptoms

A &— ® 2. This provides of
| symptoms . .
B : ® = o the serial interval
& | -
Serial interval
1 Serial Interval of
: g ° COVID-19 among Publicly
Of the Serlal ge Reported Confirmed Cases

Du et al. (2020) Emerging
Infectious Diseases

interval given this observed data
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258488/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258488/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258488/

How we got thinking about serial intervals...

By collating publicly-released contact data from
outbreaks in Singapore and Tianjin, we estimated
of the amount of

of COVID-19.

Number of Cases

This requires estimation of both the serial interval
| o | and incubation period.
Evidence for transmission of COVID-19 prior to

symptom onset. Tindale, Stockdale et al (2020) eLife infected infectious recovered
A = == l.‘ ‘H
I
Incubation period

“About 40% to 80% of the novel
coronavirus transmission occurs two We developed a new approach for estimating

fo jour days before an infected person ;-\ \hation periods whilst taking into account

has symptoms : :
that observed pairs may not represent direct
transmission )


https://elifesciences.org/articles/57149
https://elifesciences.org/articles/57149

Contact tracing approaches require detailed personal
data

This motivated a new genomic approach:

« Use pathogen whole genome sequence data as a proxy for contact data
« Use in broader clusters than e.g. households

« Incorporate under-sampling

« Fast and cluster-specific estimates: track the serial interval through time

and under different settings or variants



Estimating serial intervals with genomic data

Suppose we have a set of case clusters (perhaps genomic clusters, or clusters
associated with e.g. schools, hospitals) from an outbreak of infectious disease.

We wish to
Cluster 1 8
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E
B C e

Cluster 3 5
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We know each case’s symptom onset time and pathogen sequence, but we don’t

know who infected whom.

Cluster 2
H

I
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Whole genome sequences as a proxy for contact
data

The main idea: instead of using contact data, differences in the sequences
tell us how closely related people’s infections are and therefore who might
have infected whom.

Case A: ATCGGTATCAGTCA
Case B: ATCAGTATCAGTCA

However, since we want to work with broad clusters where we don’t
necessarily sample a large proportion of cases, we need to consider

1. There may be large uncertainty in who infected whom
2. Inferred pairs (infector & infectee) might not represent direct
transmission
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Take uncertainty in who infected whom into account, by
sampling feasible transmission networks

Pairs (i,j) in the same cluster, with Cluster 1 &
closely related sequences & realistic A D
timing, where infector i showed symptoms 2
first. B C E
1. Difference in symptom | case i: ATCGGTATCA ,
Ons.et C.iate sT . Case j: ATCAGTATCA Transmission cloud
2. Pairwise genomic of all feasible pairs
distance < G -
-'\.i: ’,:l : e
Built from the plausible pairs, by tsraa?:sprLeisAs{ion

networks from cloud

sampling an infector for each infectee.



Take uncertainty in who infected whom into account, by
sampling feasible transmission networks

Incorporate uncertainty by
sampling a set of networks:

X N

We estimate the serial interval in each network
independently —and then
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Estimate the serial interval distribution, taking indirect
transmission into account

To take under-sampling into account, we consider that, for every
infector-infectee pair (A, B) in every sampled network, transmission may

have been:
ii ii Inspired by:

Serial Intervals of

—) - — Respiratory Infectious
Diseases: A Systematic

Review and Analysis
@ @

Vink et al. (2014)
We fit a mixture model to incorporate this idea...
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https://academic.oup.com/aje/article/180/9/865/2739204
https://academic.oup.com/aje/article/180/9/865/2739204
https://academic.oup.com/aje/article/180/9/865/2739204
https://academic.oup.com/aje/article/180/9/865/2739204

Estimate the serial interval distribution: possible pathways

True serial interval distribution -~ I'(u, o)
o O
Observed time difference between A & B, 7o ~ I'(i, 0)

(andiind

T,, =sum of m + 1 serial intervals, m ~ Geo()
~Compound Geometric Gamma(u, o, ) —

Proportion w of pairs
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Estimate the serial interval distribution: possible pathways

True serial interval distribution -~ I'(u, o)
o O
Observed time difference between A & B, 7o, ~ I'(i, 0)

@ [
— — Probability of
< m sampling an

infectee

T,, =sum of m + 1 serial intervals, m ~ Geo()
~Compound Geometric Gamma(u, o, ) —

Proportion w of pairs
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* A note on gamma difference distributions, Bernhard Klar,

Estimate the serial interval distribution: possible pathways

o .
T.» Is the strictly non-negative difference of two
['(p, o) distributions

infected symptoms recovered

sf¢ =symptom
> onset
A G T A—
B ~————= o
— _> HI

time T, ~ Folded Gamma difference(y, o)

|

Proportion 1-w of pairs
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https://www.tandfonline.com/doi/abs/10.1080/00949655.2014.996566

Estimate the serial interval distribution: mixture model taking

possible pathways into account
We combine these possible transmission pathways into a mixture model
with log-likelihood:

Uy, o, m,w|D) = > loglwices (Zay b, 145 0, ) + (1 — w) frop (Lay,bi |1, O)]

Instead of maximising this directly, we incorporate Beta distributed priors
for w and m, and perform maximum a posteriori (MAP) estimation. We
calculate the MAP for each sampled network, and then average over all
networks

Our confidence intervals need to take into
account uncertainty in each network, as well as
uncertainty when combining across networks: For cluster ¢ and each network 7

Var(ji.) = E, (sé(/l(ijk)‘Z) + Var, (/l,;.,m).
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A schematic view of the method

Sample transmission
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Application: COVID-19 clusters in Victoria, Australia

Wave 1
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Cluster-specific serial intervals: in line with published
estimates, with some variation by cluster
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Using a larger range of 2nd wave clusters, we can
compare across different exposure settings

Estimates of the mean range from 2 to 9.5 days (compared to standard
estimates ~5 days)

Serial Interval Mean
—— Aged care -+ Healthcare -+ Packing plant/meat processing -+— NA
- All —s— Housing —e— School
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Using a larger range of 2nd wave clusters, we can
compare across different exposure settings

Estimates of mean serial interval by cluster site type
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Estimates of Rt are impacted by the underlying serial
interval distribution
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https://www.medrxiv.org/content/10.1101/2020.03.03.20028423v3

In conclusion

« It would have been difficult to do full transmission reconstruction
(outbreaker, TransPhylo) for the Victoria data:

- Even still, pathogen sequence data can help us learn about aspects of
transmission. Here, we estimate serial intervals, without the need for
contact studies

- Broad population sequencing makes it easier to compare serial intervals
across time, space, setting, or Variants of Concern (VOC)

Genomic epidemiology offers high resolution estimates of serial intervals for
COVID-19

Jessica E. Stockdale, Kurnia Susvitasari, Paul Tupper, Benjamin Sobkowiak,

-
med RX lV Nicola Mulberry, @ Anders Gongalves da Silva, @ Anne E. Watt, @ Norelle Sherry, Corinna Minko,

Benjamin P. Howden, Courtney R. Lane, Caroline Colijn
doi: https://doi.org/10.1101/2022.02.23.22271355

THE PREPRINT SERVER FOR HEALTH SCIENCES

25


https://www.medrxiv.org/content/10.1101/2022.02.23.22271355v1

VIRAL LOCATIONS IN A TREE AND THE WORLD

Real-time tracking of influenza A/H3N2 evolution

é‘% Built with nextstrain/seasonal-flu. Maintained by Jover Lee, Richard Neher and Trevor Bedford. Enabled by data from (_cw

Showing 1701 of 1701 genomes sampled between Nov 2014 and Oct 2022.
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Figure from nextstrain.org

This section: work with Yexuan Song, Pengyu Liu, Ailene MacPherson


http://nextstrain.org

How standard (discrete) phylogeography works

Phylogeography: Using phylogenetic trees to infer past locations of
organisms, like viruses.

Model: Location is a discrete trait. It changes along the tree under a
continuous time Markov chain (CTMC) model.

The CTMC has a rate matrix, Q, specifying the per-unit time rate of
transitions between locations i and .

This means we can calculate Pl..(t): probability that location i transitioned
to location j on a branch of length t.

Pl..(t) are used to assign locations to internal nodes, by maximizing the
overall likelihood. O can be estimated at the same time. (“Stochastic
character mapping” -- Nielson, 2002).



Phylogeography illustration

Colour: location
Tip locations are observed.

Internal node locations are
estimated with the CTMC.

Discrete trait CTMC
Q (@) @)

L(S|T, M) L

Rasmussen and Grunwald, Phytopathology, 2020.
https://doi.org/lO. 1094/PHYTO-07-20-0319-FI

Migration rates




Sampling: a challenge

What if some locations sample more
than others? They get more tips.

This can impact the inference of
where viruses were in the past.

Example: COVID-19. Some locations
test more than others. Some locations
have more resources to sequence the
virus. Some share their data more, or
less.




Two questions

1. How does sampling bias impact phylogeographic results?

2. How can we adjust for sampling rates to improve phylogeographic results?



A simulation study: how much does sampling impact
phylogeography?

e We simulate two locations: yellow and blue. We know the true locations of all
the nodes.

e We remove tips from the simulated trees to simulate different sampling
fractions.

e We reconstruct the node locations using the standard CTMC.

e How wrong is the reconstruction, and in which ways?

e We examine an Ebola dataset: how much does sampling matter?

The impact of sampling bias on viral phylogeographic
reconstruction. Pengyu Liu,Yexuan Song,Caroline Colijn,Ailene
MacPherson. PLOS Global Public Health, 2022

PLOS GLOBAL PUBLIC HEALTH



True tree

Low migration rate

When transitions are rare, the colours are
“grouped” in the tree. The overall accuracy is
high, and does not depend much on the
sampling bias.

Reconstruction Accuracy
1.00-
g P FTIITw @
o 1 ¢
0.75-
0.50-

0.25' 2 —_—

0.00-
005 0.15 025 035 045 055 0.65 0.75 0.85 095
Proportion Location-A Tips



High migration rate

True tree

If the transitions are frequent, the tip locations
don’t carry as much information about the
Internal node locations.

The accuracy is worse, but it does not depend
strongly on sampling. L

Reconstruction accuracy

1.00-

LOPePpy L

0.25-

000155 015 025 035 045 035 0,55 075 035 095
Proportion Location-A Tips



S2ampting can arrect wnetner we detect Key migration

events”
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Simulation results

1.

Standard methods did a good job with overall accuracy, which didn’t depend
much on the sampling bias

Low migration rate: overall accuracy is really high at whatever sampling bias
High migration rate: accuracy is lower, but not very dependent on sampling
bias

However, you can really get key importation events wrong.



How can we adjust for sampling bias?

We need a new mathematical model.

Background: Binary state-dependent speciation and extinction
(BiSSE) family of models (Maddison, Midford, Otto. Systematic
Biology 2007)

Underlying process: multi-type branching process.

Each “state” (here, location; general: value of a trait) has its own
branching rate and death rate, which can be estimated from data.

Y. Song MSc: We combined two advances: (1) extension to
incomplete observation (Fitzjohn et al); (2) description of how to
estimate node locations in the model (Freyman & Hohna).

This section: work with Yexuan Song, Ailene MacPherson



The mathematical method

Key ingredients:
e D, -probability that alineage N in state i at time t gives the observed
descendants.
e D_ .- probability that a lineage N in state ( at time t arose from the observed
ancestor.

e [, - probability that a lineate N in state i at time t dies out (not observed by
the present)

Approach: derive differential equations for these terms.
Use the Ds to assign the states at the internal nodes.



Differential equations for the D terms

There are 4 possibilities:

1. No state change, no speciation, no sampling.

2. There is a stage change but no speciation or sampling.
3, 4. Speciation: only the left or right lineage survives.

5. The lineage gets sampled at time t.

t-dt t-dt t-dt  t
t  t+dt / t  t+dt / t  t+dt

O,
N/

i t tdt tdt t @ — |

i tedt t t tedt R /




Dpni(t + At) ~ Dgpi(t)
+ (1 — pAt)[(1 — g;At)(1 — MAt)Dppi(t) no change
+ qjjAt(1 — AAt)Dgpj(t) state change
+2(1 — q;jAt)ANALE;(t)Dpni(t)] Speciation; one goes extinct
+ pAt(0) + O(At?) Extinction

d
EDBNi(t) = —(A + u + g;j) Deni(t) + 2XE; Dppi(t) + qijDan;(t)

where A: branching rate; u: death rate; f;: location-specific
sampling fraction; gj;: transition rate.

Initial conditions:

Tips: Dgp;(0) = f; if the tip is in state i. Internal nodes:
probability of giving rise to clades C; and (; is the product of
probabilities D.



Method overview

Take the same approach for forward equations for
D_,. and for the extinction probability E,

Use Freyman and Hohna's approach to “stochastic
character mapping”-- assigning states to the
Internal nodes:

A, 1s the probability that a node is in state i: A, =

DFNiDBNi

Assign the max-probability state to each internal
node.

Yexuan Song’s MSc thesis



Results: better than standard |

Simulate: blue location sampled
1.7x more than the red location.

Standard phylogeography
over-estimates the number of blue
nodes.

The new method gets the right
locations for the red internal nodes.

This is a proof of principle: working
on large-scale implementation and
testing.

b

Lm L
e <
. . i



Intuitively, why do all these differential equations help?

Standard phylogeography:
humans all the way back.

This doesn’t account for the
fact that if it had been in
humans, it would have been
sampled over all those years.

Adjusting for sampling fraction:
few observations means higher
likelihood that it was in the
bats.

Location: which animal is the Ebola virus in? Bats or humans?

Standard phylogeography Adjust for sampling

. bat
. human

‘ ! :
—ﬁ:ﬁ

i —y
;f:;rf‘f?ﬁ

30 20 10 0 40 30 20 10
Years from present Years from present

Shamelessly taken from: de Maio et al, New Routes to Phylogeography: A
Bayesian Structured Coalescent Approximation. PLOS Genetics, 2015



3. Methods
comparison and
opportunities



Methods comparison (these are abilities, not quality)

Method

BEASTLIER

TransPhylo

Outbreaker

2

Phybreak

SCOTTI

Unsampled | Phylogeny

hosts

(Tmited)

Vs pairs

phylogeny

phylogeny

pairs

phylogeny

phylogeny

Multiple
sequences
per host

Simultaneous
phylogeny
and
transmission

Bottleneck

>1

x

® (in
progress?)

Environmental
organism

[ (limited)

Incorporate
epidemiological
data (beyond times
of collection,
infectious period)

x

x

(readily)

x



Some recent methods and studies

Ke and Vikalo,
Graph-Based
Reconstruction and
Analysis of Disease
Transmission Networks
Using Viral Genomic Data,
Journal of Computational
Biology (2023)

Clustering + transmission
reconstruction within
clusters via graphs and
host importance scores

Lindsey et al.

Characterising
within-hospital SARS-CoV-2
transmission events using
epidemiological and viral
genomic data across two
pandemic waves, Nature
Communications (2022).

Adapted Outbreaker?2 for

hospital settings. Includes
ward occupancy data

Junhang Pan et al,

TransFlow: a Snakemake
workflow for transmission
analysis of Mycobacterium
tuberculosis whole-genome
sequencing data,
Bioinformatics (2023)

Pipeline from raw
sequences to clustering to
transmission
reconstruction, combining
various existing methods

Van der Roest et al, A
Bayesian inference method
to estimate transmission
trees with multiple
introductions; applied to
SARS-CoV-2 in Dutch mink
farms, bioRxiv (2023)

Extension to Phybreak
allowing for multiple

pathogen introductions



Areas that need more methods

Intermediate sampling: between 10-40%

uncertainty
environmental source

Plasmids and bacteria together

Variable sampling:
e over time (in principle ok in TransPhylo
implemention underway)
e across a dataset

unsampled host

Reinfections and coinfections

Environmental transmission |a rger dataSEtS

Incorporate more epidemiological data

Connect to forecasting phylogeny
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/™ Check for updates

JessicaE. Stockdale ®, Pengyu Liu® and Caroline Colijn®

Genomic technologies have led to tremendous gains in understand
how pathogens function, evolve and interact. Pathogen diversity is
measurable at high precision and resolution, in part because over tt
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4. Remaining
guestions and
discussion



