Lecture 2:
Non-phylogenetic
transmission
reconstruction



Epidemiological vs genomic outbreak reconstruction

Epidemiological outbreak data alone can be used for outbreak reconstruction (e.g.
contact tracing), but genomic data offer a high-resolution source of information

What can genomic data offer?
- Extra detalil

- Resolve transmission where epi data are hard to obtain and/or have ‘gaps’
- Genomic data becoming ever easier, cheaper and faster to obtain

To infer who infected whom and key parameters associated
with transmission



Challenge: create a single framework/likelihood incorporating
genomic & epidemiological data

All of the methods we’ll see today must balance these 2 data sources. This leads to
qguestions around:

% Do we evaluate the epi data first, and then further discriminate based on genomic
data?

% Or, do we do the opposite?

% Or, do we find a way to jointly evaluate both data sources?

% But, the units are completely different!?

% What if the genomic and epi data seem to disagree?

Each method will have its own approach to answering these questions



Challenge: create a single framework/likelihood incorporating
genomic & epidemiological data
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Imagine we have 3 people infected in an outbreak... Y, "
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We want to combine our genomic information and our epidemiological information,
to best narrow down which possible path the infection took...




2 of the earliest
approaches



Many of the earliest methods tackled the 2 data streams

separately
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Integrating genetic and epidemiological data
to determine transmission pathways of

foot-and-mouth disease virus
Eleanor M. Cottam'?, Gaél Thébaud”>', Jemma Wadsworth!, John Gloster>*,
Leonard Mansley?, David J. Paton', Donald P. King' and Daniel T. Haydon>*
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3-step maximum likelihood
approach

Rank the likelihood of the set of
plausible trees

Applied to 20 farms from 2001
UK Foot-and-mouth disease
outbreak, to obtain a most likely
transmission tree
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2599933/

Cottam et al. model

Begin with a set of all possible transmission trees given

the set of sampled cases

1. Select only trees that are consistent with known
infection pairs

2. Select only remaining trees that are consistent with
the genomic data

3. Calculate the likelihood of each remaining tree
based on the epi data — describing both the chance
each host (farm) was infected on a given day and
able to infect others on a given day.



Cottam et al. model

Begin with a set of all possible transmission trees given
the set of sampled cases Because there are many
1. Select only trees that are consistent with known possible trees
infection pairs
2. Select only remaining trees that are consistent with  q— potentially demanding
the genomic data
3. Calculate the likelihood of each remaining tree
based on the epi data — describing both the chance = <—— Also potentially demanding
each host (farm) was infected on a given day and

able to infect others on a given day. _ ,
Depending on the size of

the data and how many
trees you were able to
exclude



Cottam et al. model . .
Finally, either

(a) pick 1 optimal tree, or

(@) (b) pick a set of optimal trees (and
e look for similarities between them)
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SeqTrack - a graph based approach

A second method from 2011 also tackles first the genomic and then the
epi data Heredity (2011) 106, 3E3-3%0 @

© 2011 Macmillan Publisbers Limited All rights reserved 0018-067X/11
www.nature.com/dy

ORIGINAL ARTICLE

Reconstructing disease outbreaks from genetic
data: a graph approach

T Jombart, RM Eggo, PJ] Dodd and F Balloux
Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College Faculty
of Medicine, London, UK

* Graph theory approach to find ‘genetically parsimonious’

transmission trees
« Algorithm SeqgTrack finds the optimum branching in a directed

graph



https://pubmed.ncbi.nlm.nih.gov/20551981/

Imagine we have an outbreak with 6 cases, a:f




Imagine we have an outbreak with 6 cases, a:f

Genomic distance matrix (3]
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Imagine we have an outbreak with 6 cases, a:f

Genomic distance matrix e
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(i) Create a connected, directed graph t

with weights w;; equal to the genetic distance




Imagine we have an outbreak with 6 cases, a:f

Genomic distance matrix (3]
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(i) Create a connected, directed graph t

with weights w;: equal to the genetic distance .
? i &4 ? Sample collection dates:

We do this every case/node, but lets a: t=3
restrict to (a) for simplicity... b:t=1 e:t=4
c:t=2




Imagine we have an outbreak with 6 cases, a:f

Genomic distance matrix e\
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(i) Create a connected, directed graph t
with weights w;; equal to the genetic distance )
(i) Remove edge ij if t; < t; Sample collection dates:




Imagine we have an outbreak with 6 cases, a:f

Genomic distance matrix e
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(i) Create a connected, directed graph t

with weights w;; equal to the genetic distance ]

(i) Remove edge ij if t; < t; Sample collection dates:

ASSUMPTION: sample collection must be a: t=3
chronological in the transmission tree b: t=1 e:t=4
c:t=2




Imagine we have an outbreak with 6 cases, a:f

Genomic distance matrix e
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(i) Create a connected, directed graph t

with weights w;; equal to the genetic distance ]

(i) Remove edge ij if t; < t; Sample collection dates:

a: t=3
Repeat for every node in the graph b:t=1 e:t=4
c:t=2




Imagine we have an outbreak with 6 cases, a:f

Genomic distance matrix

e : 3 5

b | o 2 4 7 5
¢ 0o 1 4 12
a4 | o 1 3
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:

(i) Create a connected, directed graph
with weights w;; equal to the genetic distance )
(i) Remove edge jift <t Sample collection dates:

(iii) Find the spanning directed tree optimizing
(i.e. minimizing) Yw;;




‘This problem has been solved by Edmonds (1967) and Chu and Liu (1965), ...The
algorithm proceeds by identifying optimum ancestors for each node at the
exception of the root (the oldest isolate), and then recursively removes possible
cycles. However, in our case, cycles are impossible as ancestries cannot go back in

time, which greatly simplifies computations.’
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Some limitations:

- All cases come from a single index case i.e. a single sampled ancestor
- All cases are known and sampled

- Sampling times not used in weighting

SeqTrack also:

- Assumes that individuals became infectious in the order they are sampled
- Has no uncertainty in the output transmission tree

But
- Fast, simple, explore all the possibilities
- Easily adaptable to add rules about e.g. end of infectiousness



2 short primers
for lecture 2



A quick primer 1: generation time and sampling
time
generation

[ —® O O
infected * sampled
time j O O
infected sampled
sampling

Generation time = the time interval between the infection of an individual and
their seeding of new secondary cases.
Sampling time = the time interval between infection and collection of an
isolate.



A quick primer 2: Markov Chain Monte Carlo (MCMC(C)

A popular computational method for exploring complex and/or high-dimensional
spaces — e.g. transmission trees

The main idea, from Bayes theorem:

- likelihood
p(@ly) < p(y|0)p(6) For us, we may have e.g.
. f - \rior © = transmission tree and
Posterlpr distribution—the P parameters controlling it
probability of our y = sequences and epi data

model parameters 6
given the data y

When this quantity (the posterior) is hard to maximise directly, we instead form a
Markov chain with equilibrium distribution equal to the posterior distribution, and
take many samples from this chain.



A quick primer 2: Markov Chain Monte Carlo (MCMC)

A (not quite
Average length of books COI’I’GCt) Intuitive
o _ explanation
— Likelihood
@ _| — Prior
=2 — Posterior
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Number of pages, ©



A quick primer 2: Markov Chain Monte Carlo (MCMC(C)

Average length of books

06 08 10
| |

Density
04

Essentially, we approximate
the posterior distribution by
. . . random sampling from a

0 500 1000 1500 2000 probabilistic space (of all
possible books or all
possible transmission trees).

02

Number of pages, ©



A quick primer 2: Markov Chain Monte Carlo (MCMC(C)

Data-augmented MCMC is a method for dealing with missing data within an
MCMC algorithm. As well as sampling from the parameter space at each step of
the Markov chain, we also sample values for the missing data.

In transmission inference, missing data might be the time of infection of the

cases (since typically we only know sampling times) or the number of unsampled
cases, for example.



A quick primer 2: Markov Chain Monte Carlo (MCMC(C)

In actuality, the ‘random’ samples we collect in Trace plot diagnostics
MCMC are not independent draws — they form -
a chain with equilibrium distribution equal to
the target posterior distribution.
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Transmission
reconstruction
with
outbreaker(2)



outbreaker and outbreaker2

We’re going to look at these methods in detail — and will be using them in
the next exercise

These create a unified likelihood for genetic & epidemiological data, but
within a Bayesian framework, that allows more estimation and greater
flexibility.

outbreaker vs outbreaker2

outbreaker2 is a more customisable version of outbreaker

We’re mainly going to focus on the core outbreaker model...


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003457
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Bayesian Reconstruction of Disease Outbreaks by
Combining Epidemiologic and Genomic Data

Thibaut Jombart*, Anne Cori, Xavier Didelot, Simon Cauchemez, Christophe Fraser*, Neil Ferguson

MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United
Kingdom

Data:

Nsampled cases, each with genetic sequence s; and time of sampling ¢;

Quantities:

d(s;, s;) = number of mutations (distance) between sequences i and j
1(si, sj) = number of nucleotide positions which can be compared i and j

w = distribution of the generation time
f = distribution of the sampling time

> 1:1999-08-01
GCACCCATTCCCGCCTGGAGAT
> 232087-11-01
GCACCCATTCCCGCCTAGAGAT



outbreaker: the data

Data:

N sampled cases, each with genetic sequence s; and time of sampling ¢;

Quantities:

d(s;, s;) = number of mutations (distance) between sequences i and j } Derived
1(si, sj) = number of nucleotide positions which can be compared i and j

w = distribution of the generation time Assumed
f = distribution of the sampling time

|> 1:1999-08-01

> 2:2007-11-01 : iccion £
GCACCCATTCCCGCCTAGAGAT ransmission tree



outbreaker: the data

Data:

N sampled cases, each with genetic sequence s; and time of sampling ¢;

Quantities:

d(s;, s;) = number of mutations (distance) between sequences i and j
1(si, sj) = number of nucleotide positions which can be compared i and j

w = distribution of the generation time
f = distribution of the sampling time

Augmented data: a; ax* b * i

a; = index of the most recent sampled ancestor of i
K; = number of ©ampledandunsampled) generations between i and «;

7inf - gate of infection of i




outbreaker: the data

Data:

N sampled cases, each with genetic sequence s; and time of sampling ¢;

Quantities:

d(s;, s;) = number of mutations (distance) between sequences i and j
1(si, sj) = number of nucleotide positions which can be compared i and j

w = distribution of the generation time
f = distribution of the sampling time

Augmented data: a; ax* b * i

a; = index of the most recent sampled ancestor of i (=3
K; = number of Gampledandunsampled) generations between i and «; i

7inf - gate of infection of i




In addition to obtaining MCMC samples of the augmented data, we estimate 2 parameters

Parameters:

u = mutation rate, per site per generation of infection
m = proportion of unsampled cases
are estimated as well as the transmission tree

outbreaker: the parameters



In addition to obtaining MCMC samples of the augmented data, we estimate 2 parameters

Parameters:

u = mutation rate, per site per generation of infection
m = proportion of unsampled cases
are estimated as well as the transmission tree

Posterior distribution:

P(D,A|0)P(0)

X p ({Si» ti, ai, KirTiinf}i=1,...,N | 78 7T) X p(u, ).

D = Data
A = Augmented data
6 = Parameters

outbreaker: the model



In addition to obtaining MCMC samples of the augmented data, we estimate 2 parameters

Parameters:

u = mutation rate, per site per generation of infection
m = proportion of unsampled cases
are estimated as well as the transmission tree

Posterior distribution:

P(D,A|8)P(6 i
P(A! 0 |D) = A Xp ({Si; ti, a, KirTilnf}i=1,...,N | u, T[) X p(‘Ll, T[)'

P(D)
" ' ' ) ".
likelihood data augmented given prior
data the  onparam.s
param.s



In addition to obtaining MCMC samples of the augmented data, we estimate 2 parameters

Parameters:

u = mutation rate, per site per generation of infection
m = proportion of unsampled cases
are estimated as well as the transmission tree

Posterior distribution: 1 | 1 |

P(D,A|0)P(0)

X p ({Si» ti, ai, KirTiinf}i=1,...,N | 78 7T) X p(u, ).

All cases are assumed to be conditionally independent, given the identity of
their most recent sampled ancestor, so the likelihood decomposes to:

N

inf inf i
p ({Si'tir ap, ki, Ty " Yi=1,..,N | H, 7T) = 1_[19 (Si» i, K Ty [Saptay Tolz?f:ﬂ; 7T) X
i=2

p(ty 1T (s)p (TIM) p(ar)p (e



In addition to obtaining MCMC samples of the augmented data, we estimate 2 parameters

Parameters:

u = mutation rate, per site per generation of infection
m = proportion of unsampled cases
are estimated as well as the transmission tree

Posterior distribution:

P(D,A|0)P(0)

P(D) xp ({Si' ti, a;, KirTiinf}i=1,...,N | U, 7T) X p(u, ).

P(A,6|D) =
All cases are assumed to be conditionally independent, given the identity of
their most recent sampled ancestor, so the likelihood decomposes to:

N
inf inf i
p ({Si:tir ap, ki, Ty " Yi=1,..,N | H, 7T) = 1_[19 (Si» i, K Ty [Saptay Tolz?f:ﬂ; 7T) X

i=2
inf in These terms relate
p(eu 1T Dp(s)p (1) plan)per) o [0e e e o



This is actually an approximate likelihood

One point to note: since cases may share a common unsampled ancestry, this is
technically a composite (approximate/pseudo) likelihood

N

inf — inf inf
p ({Si! Li, ai'Ki'Ti }i=1,...,N | 12 77:) - l_lp (Si'ti'ai'KiITi ISal., tai' Tai 'Ky 71') X
i=2

p(ty ITIMD)p(s)p (TiMF) pa)p(ier)



A genetic part and an epidemiological part

The pseudo-likelihood is further decomposed into genetic and epidemiological
components. For each casei=1,...,N:

Tlnf wm )

= p(si lag sap i) x p(t |T‘“f) (7] @, TG k) p s 1) ()
\ ' J \ ' J \

Genetic part Epidemiological part Constant

inf
p (SutvauKUT |Sa,_ ap




A genetic part and an epidemiological part

The pseudo-likelihood is further decomposed into genetic and epidemiological
components. For each casei=1,...,N:

Tlnf wm )

= p(si |y Sap ki, 1) X p(t |T‘“f) (7] @, TG k) p s 1) ()
\ ' J \ ' J \

Genetic part Epidemiological part Constant

inf
p (Si'tilaiiki"r' |Sa )

Probability of their sequence arising,
given their infector, their infector’s
sequence, any unsampled cases and
the mutation rate



A genetic part and an epidemiological part

The pseudo-likelihood is further decomposed into genetic and epidemiological
components. For each casei=1,...,N:

p (Si' ti, aj, K, Tilnf |Sail tai! Tcglfr H 77:)
= p(si lai, Sqp ki i) X P (ti |Timf)P (Timf | ai:Tal.'lnf» K ) p(i; [m)p(ay)
\ J \ J \
Y Y
Genetic part Epidemiological part Constant

Probability they were sampled at ¢, given their
time of infection.

Probability they were infected when they were,
given ancestor and unsampled intermediates.
Probability of their unsampled intermediates given
sampling rate




A genetic part and an epidemiological part

The pseudo-likelihood is further decomposed into genetic and epidemiological
components. For each casei=1,...,N:

Tlnf wm )

= p(si lag sap i) x p(t |T‘“f) (7] @, TG k) p s 1) ()
\ ' J \ ' J \

Genetic part Epidemiological part Constant

inf
p (SutvauKUT |Sa,_ ap




Genetic part

The outbreaker genetic model assumes no within-host genetic diversity, and
so mutations are direct features of transmission events. All transmission

events are assumed independent, and the genetic pseudo-likelihood is very
fast to compute.

Genetic pseudo-Llikelihood of case i = the probability of observing genetic
_ distance d(s;, s,.) between sequence
a; ax* b * i t L
| | | | s; and the ancestral sequence s, with i
| | | | and «; separated by k; generations.

~ d(spSe) —

As a method designed for shorter timescale outbreaks, reverse mutations
are considered negligible.

Genetic pseudolikelihood =

Md(si,sai) (1 _ ﬂ) xixl(si,sai)—d(si,sai)




Remember:

E p i d em io lo gi ca l p a rt w = distribution of the generation time

[ =distribution of the sampling time

Describes the probability of...

Time of infection given . :
Time of sampling given  knowledge of infector Number of missing cases given

time of infection \ + rate of missing cases
P (ti |Timf)p (Timf | oy, TIM, 1) p (o |m)

f (& — 100 scwei (Tinf — 70 5 NB(1 J1;-1, )

*

probability of obtaining one ‘success’
(sampling a case) after k;—1 ‘failures’
(unobserved cases), with probability
of success .



Combine genomic & epi parts for each case in the outbreak

p (Sll tll ail Ki; Tllnf |Sai; tail Té{lf’ #I 71-)
= p(si lai, Sap ki) X p (ti |Timf)P (Timf | a;, I, 1) p (s 1P (@)

\ ) \ J
! Y \

Genetic part Epidemiological part Constant

That forms the core of the outbreaker model.

The likelihood expressions introduced in the previous slides are combined with
priors for the mutation rate u and proportion of unsampled cases .

In outbreaker s given a uniform prior on [0,1] - corresponding to an assumption of scarce
1: prior information on this
m is given a beta distributed prior with parameters controlled by the user of
outbreaker. This is a flexible prior which can reflect different levels of prior
knowledge for different datasets.



Option to detect imported cases

The authors also introduce a method for detecting imported cases - i.e. cases
that are not descended from another case in the outbreak.

In an initial step of the model, genetic outliers are detected, relative to the
other samples in the dataset. A ‘global influence’ GI; is calculated for each
sampled case, defined as

n n
_ Describes what proportion i’s
Gl; = E Z GPL; |-E <Z GPLi) } GPL is of the total GPL
j=1,j#i i=1

where GPL is the genetic pseudo-likelihood. This is calculated over the first
few samples of the MCMC, say 50.

A large value of the GI; implies unlikely numbers of mutations i.e. a ‘distant’

sequence. Cases with a global influence more than 5 times the average across
all cases are considered outliers.
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An app[ication from Bayesian Reconstruction of Disease Outbreaks by

Combining Epidemiologic and Genomic Data

Thibaut Jombart*, Anne Cori, Xavier Didelot, Simon Cauchemez, Christophe Fraser*, Neil Ferguson

Data frO m 2 O O 3 S i n ga pO rea n MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United
. Kingdom
Severe Acute Respiratory ’
Syndrome (SARS) outbreak.
Sin2774

13 genomes with <15 mutations
between all pairs. 209\ gino7as Sin?5%‘

1/1 I

Sin2677

Generation time = (mean 8.4, SD 3.8) Sin2679 31

Same sampling time Sin850

4/0.83

Sin846

. 3/1
e 5/0.52/70
o

R Sin848

Collection date Sin849 6/091 y‘

m 2003-03-03 <9

H 2003-03-10 Sin847

2003-03-17 Gk —
@ 2003-03-24
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An application from

Data from 2003 Singaporean
Severe Acute Respiratory
Syndrome (SARS) outbreak.

13 genomes with <15 mutations
between all pairs.

Generation time = '(mean 8.4, SD 3.8)
Same sampling time

How to get here from the posterior
expression?
1. Run MCMC to sample many trees
(and many y, m, ... values)
2. Discard burn-in
3. Pick a consensus tree that best
represents the remaining trees

QIPLOS |stsarm
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Bayesian Reconstruction of Disease Outbreaks by
Combining Epidemiologic and Genomic Data

Thibaut Jombart*, Anne Cori, Xavier Didelot, Simon Cauchemez, Christophe Fraser*, Neil Ferguson
MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United
Kingdom
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Campbell et al. BMC Bioinformatics 2018, 19(Suppl 11):363

https://doi.org/10.1186/512859-018-2330-z B M C Bl Oi nfo rm atl csS

outbreaker2: extensions

CrossMark
outbreaker2: a modular platform for ®
outbreak reconstruction
outbreaker data Finlay Campbell, Xavier Didelot, Rich Fitzjohn, Neil Ferguson, Anne Cori and Thibaut Jombart”
data From the 6th Workshop on Computational Advances in Molecular Epidemiology (CAME 2017)
infrastructure Boston, MA, USA. 20 August 2017

« Combines an R package with C++
code for efficiency, through Rcpp

« Can customise all these facets of
the package

- Forexample, they implemented
the TransPhylo methodology,

j 1800 which we will work with
tomorrow, in outbreaker?.
numbers = lines of code

(450 )
(@ustnpETeEy)  ©

® priors



https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2330-z

After the break

We’ll explore outbreaker for some TB and SARS-CoV-2 data

Any questions?



