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What is “Reconstructing transmission with
genomic data”?

Reconstructing transmission:

inferring who infected whom

estimating patterns among who infected whom: e.g. were vaccinated
individuals infectious?

inferring transmission routes among locations: farms, regions, even
countries

Genomic data:

sequence data (RNA, DNA), usually for viruses, bacteria (maybe
other pathogens)

usually consensus sequences: one sequence per isolate

usually one isolate per individual (i.e. per host)

Here we focus on person-to-person transmission.
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Infections are evolving

Take a look at the DNA of your
favourite bacteria, for example:

Vivian Chou, Harvard
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Sequencing is less expensive now than ever

We can read the RNA, DNA of viruses and bacteria that cause infection,
and see how they are changing as they spread.
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New data - a big opportunity

microreact.org, by D. Aanensen and colleagues

https://microreact.org
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GISAID: Global Initiative on Sharing All
Influenza Data

GISAID - July 11, 2022

https://gisaid.org
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Pathogens acquire genetic variation as they
spread

Visualization of flu evolution. Image: nextflu.org

https://nextstrain.org/ncov/global
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Pathogens even vary from person to person
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Transmission reconstruction

  

Reconstructing transmission using sequences is possible,
but not with perfect accuracy
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Why do transmission reconstruction?

We may or may not need to know individual transmission events:
whether Alice infected Bob, Bob infected Eve, or Eve infected Chloe

But we do want to know when, where and how transmission takes
place

Drilling into the details of transmission can help understand this,
extract patterns, and project for future outbreaks

Reconstructing transmission can help to identify when infection did
not occur

Three reasons: (1) public health applications; (2) modelling applications;
(3) mathematical and statistical challenges
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Data on genetic variation can help

Data about this variation:

can inform us about who
infected whom - improve
outbreak control

bigger scale: help with choosing
best vaccines, best antibiotics
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Applications of transmission reconstruction
and genomic epidemiology

Outbreak questions:

How fast do we have to
find cases?

How do we find missing
cases?

What are early signs of a
big outbreak?

Large-scale questions

How to choose what
goes in a vaccine?

How to use antibiotics
most wisely?

← GAP→

Sequence data

High-resolution picture
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Relatedness is key
The answers to our questions aren’t just in the data, but in the
connections among data points.

The sequence
AACCATAGGT

doesn’t mean much for transmission on its own.

But with two:
AACCATAGGT

GACCATAGGT

we know we have two very similar things.
(Off the shelf machine learning:
not good enough)
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Three main roles for sequences in
transmission dynamics

1 Infer global routes of movement of a virus
I nextstrain.org
I Challenges from different sampling and sequencing in different places

2 Infer virus population dynamics over time
I Field of phylodynamics - see the Evolutionary Dynamics and molecular

epidemiology of viruses module (N. Mueller, J. Palacios)
I Often large-scale, can be limited in terms of direct public health action;

more ecological

3 Reconstruction of transmission in localised outbreaks
I Potentially useful for public health in the short term
I High sampling required
I Can be limited by low pathogen diversity at the outbreak scale
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This module: focus on transmission in
localised outbreaks

Identifying localized outbreaks:
clustering often plays a role.

Clustering: put similar
sequences into groups

Starting point for onward
analysis

Simple approach to identify
groups of closely-related
sequences

Some limitations
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Clustering: epidemiological view

A cluster (or outbreak):

a set infections arising from a common source or through rapid chains
of transmission

usually in a defined location or population

usually in a relatively short period of time

distinguishable from the background epidemic dynamic

Sources: N. Oteko and PANGEA consortium, 2024 (draft)
Oster et al, Am. J. Prev. Med 2021

Context: HIV
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Genomic clusters

SNP: single nucleotide polymorphism. A change from (eg) A to C at
a single site.

Simplest clustering method: Sequences from Bob and Alice are placed
in the same cluster if they differ by k SNPs or fewer

Limitations:
I what to do about ‘N’s in the multiple sequence alignment?
I Should all sites “count” for the same distance?
I Is there a “right” threshold, k? Why?

Alternative: use a genetic distance threshold, with an estimated
evolutionary model for your pathogen

I same “what threshold?” problem

Note: none of this has any epidemiological information.
Key idea: sequence similarity reveals recent transmission.
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Genetic clustering methods

Account for time, substitution rate variation, selection: e.g. our own
’transcluster’ (Stimson et al MBE 2019 “Beyond the SNP threshold”)

Account for time, genetic distance, and epidemiological data
(cov2clusters, B. Sobkowiak)

Account for phylogenetic tree – joint evolution of a set of sequences
I – examples; cluster picker, cluster picker II, cluster matcher (developed

for HIV primarily)
I – limitation: tree may not be known to high accuracy; tree and clusters

may change as new data are added

Integrated methods – combine diagnosis, genotyping, and genetic
similarity (e.g. Poon et al, Lancet HIV)

Modularity: use network science techniques, not strict cutoffs (Liu et
al Virus Evolution 2023)
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Use of clustering: an HIV example

Wilbourn et al, Characterization of HIV Risk Behaviors and Clusters Using
HIV-Transmission Cluster Engine Among a Cohort of Persons Living with
HIV in Washington, DC, AIDS Res Hum Retroviruses

“Cluster analyses used HIV-Transmission Cluster Engine to identify
linked pairs of sequences (defined as distance ≤ 1.5%). Twenty-eight
clusters of ≥ 3 sequences (size range: 3-12) representing 108 (3%)
participants were identified. None of the five largest clusters (size
range: 5-12) included newly diagnosed [people living with HIV]. ”
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Use of clustering: a TB example

Nonghanphithak et al, Clusters of Drug-Resistant Mycobacterium
tuberculosis Detected by Whole-Genome Sequence Analysis of Nationwide
Sample, Thailand, 2014-2017, Emerging Infectious Disease 2021

“We analyzed whole-genome sequence data for 579 phenotypically
drug-resistant M. tuberculosis isolates (28% of available
MDR/pre-XDR and all culturable XDR TB isolates collected in
Thailand during 2014-2017). Most isolates were from lineage 2 (n =
482; 83.2%).”

“Cluster analysis revealed that 281/579 isolates (48.5%) formed 89
clusters, including 205 MDR TB, 46 pre-XDR TB, 19 XDR TB, and
11 poly-drug-resistant TB isolates based on genotypic drug
resistance.”

Researchers compare “clustered” to “unclustered” cases to learn
about what might be drivers of local, recent transmission.
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Direct application of clustering – direct
transmission didn’t happen

Exclude suspected transmission events:

1 Example: consider 2 cases that are epidemiologically linked

2 If their viral (or bacterial) sequences are very different, there was
likely no direct transmission

3 The apparent link was spurious (“false positive” epidemiological link)

4 Implication: there was another source of infection.
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Direct application of clustering - find new
links beyond epidemiological analysis

Identify sources of infection that did not have apparent epidemiological
links

1 Sequences firmly place Bob in a cluster with Alice and Eve (for
example, sequences are 1 SNP away)

2 Bob has no known epidemiological links to Alice, Eve or their contacts

3 Yet the genomes are so close – compared to other isolates in the
dataset – that a link is very likely to exist

4 This can help identify previously unknown exposures: true links were
missing (“false negative” epi link)
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Example: COVID-19 genomic epidemiology in
Australia

https://www.nature.com/articles/s41467-020-18314-x
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SARS-CoV-2 data from Australia

Brief data description

1388 lab-confirmed cases in Victoria

62% travellers

27% known contacts

10% unknown source of exposure

1242 sequenced

1085 passed quality control

Maximum 15 SNPs compared to Wuhan 1

Caroline Colijn Jessica Stockdale Transmission and genomic data 24 / 41



Clusters in Australian (Victoria)
SARS-CoV-2 data

The authors used ClusterPicker to divide the genomes into clusters

737 of 1085 were in any cluster

76 clusters: median size 5, median duration 13 days This suggests
good control (and could provide a serial interval estimate too!)

34 clusters were entirely overseas travellers

34 were mixed. In these, typically the first case was a traveller

81 sequences with unknown exposure (from the epi point of view): in
24 clusters

This gives information about the exposure
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Learning from epidemiological and genomic
clusters

Epidemiological (epi) clusters: groups of cases thought to be linked
together on the basis of epidemiological (not genome) data, eg where
people live, timing, health care, suspected exposure

Genomic clusters: similar genomes grouped together on the basis of
(sort of) genetic distance

Four distinct epidemiological clusters → one genomic cluster -find
links they didn’t know about

One big epi cluster separated into 4 distinct genomic clusters: exclude
links they thought they knew about

Data required for this nice work: SARS-CoV-2 sequences, suspected
exposure times and sources from epidemiology.
Punch line: Just with sequences and clustering, we can learn things about
transmission. But we can do better.
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Why do more than clustering?

If a pathogen spreads person-to-person, what do “unclustered” cases
mean? At least one of:

Transmission that is ancestral to the sample but not sampled (we
don’t have the infector, or their infector)

The individual did not infect anyone (that we identified before the
relevant time period ended)

There was a lot of evolution since the last transmission event (e.g.
long latency): a form of transmission not being sampled

Low cutoffs: cluster boundaries are strict, so some (true) links are
rejected

Epi-identified clusters: as above and/or incorrect epidemiological
assumptions, e.g. contact data are not perfect
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Clustering and sampling in a network

Min et al, Chaos, Solitons and Fractals, 2024

Sampling and cutoffs can have a large impact on clustering patterns.
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Clusters and too many pairs

In a cluster of 10 people there
are 45 pairs.

Each person is infected once:
only 9 true pairs at most.

Cluster of 50: 1225 pairs! Only
49 can be transmission events.

Some papers interpret “being in
the same cluster” or “being
within 3 SNPs” as indicating
transmission, but this includes a
lot of incorrect transmission
events
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Beyond clusters: the challenge of
transmission reconstruction

Sequences offer much more than just really good typing

Sequences and their distances don’t tell us directly who infected whom

But they provide information about it

Additional information in time, location, shared mutations

Challenge: extract transmission information, capturing uncertainty

In the next part of this lecture: some key terms, and previous methods to
meet this challenge
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Key terms and concepts

Transmission tree: who infected whom (and often, at what time)

Phylogenetic tree, or phylogeny: more on this later.
I Tips: sampled taxa.
I Internal nodes: inferred common ancestors.
I A phylogeny is kind of like the tree of life.

Genetic distance: a measure of how distant two sequences are. Could
be number of single nucleotide differences, or distance in an
evolutionary model

SNP: single nucleotide polymorphism

More broadly: we use probability, maximum likelihood, trees,
evolutionary models, Bayesian inference; serial intervals, generation
times.
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Selected early methods - you will hear more

2008 Cottam et al Cottam et al: Integrating genetic and epidemiological
data to determine transmission pathways of foot-and-mouth disease virus.
(Roy. Soc. Proc. B)

2012 Jombart et al, Reconstructing disease outbreaks from genetic data: a
graph approach, Heredity (SeqTrack)

2012 Ypma RJ, Bataille AM, Stegeman A, Koch G, Wallinga J, et al.
Unravelling transmission trees of infectious diseases by combining genetic
and epidemiological data. Proc Biol Sci 279:

2012 Morelli MJ, Thebaud G, Chadoeuf J, King DP, Haydon DT, et al. A
Bayesian inference framework to reconstruct transmission trees using
epidemiological and genetic data. PLoS Comput Biol 8

2014 Outbreaker: Jombart T, Cori A, Didelot Z, Cauchemez A, Fraser C,

Ferguson N, Bayesian Reconstruction of Disease Outbreaks by Combining

Epidemiologic and Genomic Data, PLOS Computational Biology
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How is the genetic distance between two
pathogen isolates related to identifying
transmission?

The genetic distance between transmitting pairs depends on

timing of cases
I TB, a chronic disease, has highly variable generation time (latency).

Other pathogens are less variable (e.g. SARS-COV-2)

How diverse is the pathogen population within an individual?
I is diversity higher in high-burden places?
I how does it depend on the individual?
I how does it depend on treatment, pre-existing subpopulations,

selection, re-infection

The bioinformatics pipeline and culture method can matter.
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Genetic distance and transmission

You have two cases. Are they (likely to be) linked by transmission?
Ideally, we integrate various sources of data and local information:

Transmission ↔ genetic distance depends on:
I in-host diversity
I are polymorphisms related to drug resistance, treatment history?

Transmission ↔ timing depends on
I natural history / timing of transmissibility after infection
I sampling - individual (e.g. health care worker sampled sooner than

’hidden’ population

location

social contacts
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When is person-to-person transmission
reconstruction from genomic data feasible?

Person-to-person transmission reconstruction requires:

Enough sampling density that there are likely some transmission pairs
in the data.

Inference methods targeted for the sampling you have. For our
methods, over about 25%. (if less, there are options, but not in our
main focus)

Clustering: reduce numbers of very unlikely pairs (100s of SNPs) or
very long branches in the phylogeny (with many unsampled cases)

Sufficient diversity that the genomic data tells you something.
SARS-CoV-2: borderline with approximately 1 mutation every 2
weeks.
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Real-time interventions and applications

Transmission reconstructions can be used to predict:

the most likely infector(s) for individuals, and how uncertain this is

where there are unsampled cases (in the phylogeny, or in the
epidemiology: connected to which individuals, for example)

for whom we have not found a likely infector: could be used to direct
further investigation, if the outbreak is ongoing

how long before secondary infections?

correlates of “transmitter” status.
I this is in contrast to standard molecular epidemiology, which often

asks: what is correlated with “being in a cluster” (transmitter or no)
I Side note: interpreting “clustering” is hard – missing transmission,

ancestral to the data, but not in the data.
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Challenges and options

Genetic distances may be higher if there is a lot of drug resistance
(TB) or sites under selection

Need closely-related clusters: probability or distance cutoffs still play
a role in many analyses

Many tools exist and the field is growing

As yet, very limited tools for pathogens that move among humans
and in the environment. Would need strong baseline data for different
populations.
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Challenges and options, continued

Some packages and tools:
I TransPhylo: R, unsampled cases and in-host diversity
I phybreak (Klinkenburg): R, no unsampled cases
I Beastlier (Hall): Beast, simultaneous transmission and phylogenetic

trees, but no unsampled cases
I Outbreaker: R, no phylogenetic trees, and no in-host diversity, but

flexible.
I SCOTTI (de Maio): Beast2, unsampled ≈ environmental samples
I New methods are coming!
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Some key components of transmission
reconstruction

Clustering, or choosing which sequences to include. Importations?

Sampling– can we account for unsampled hosts?

How do we account for the shared evolutionary history of our set of
viruses?

I Phylogeny?
I Parsimony?
I Pairs?

How do we account for additional epidemiological data, like:
I timing of infection, clearance
I location, exposure site, likely exposure time

Transmission bottleneck: how many pathogens are transmitted from
one host to another?
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What’s next?

Reconstructing transmission trees!

Introduction to genomics for genomic epidemiology

Non-phylogenetic outbreak reconstructions in outbreaker

Phylogenetic trees: theory and practice

TransPhylo: genomic epi with trees

Research forefronts: SARS-CoV-2

Discussion
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