Research
Forefronts:
Estimation of
serial intervals
using pathogen
genomic data

with an application to
COVID-19



Sometimes, our data
might not be sufficient to
fully reconstruct the
transmission tree

But that doesn’t mean
there’s nothing we can
learn...

We developed a method to
estimate serial intervals using
genomic data.



What is the serial interval?

Definition of the serial interval = length of time between successive cases in
a chain of transmission
= length of time between symptom
onset in an infector and infectee

infected symptoms recovered
A ...... [ 3 o
B: -+, I ® @ )
! infected symptoms recovered
-+ >

Serial interval



Why is the serial interval important?

R, = the average number of
cases caused by a single
infected individual, in a wholly

% Tells us about the speed of transmission... susceptible population
R, =the average number of

N : cases caused by a single
% ...this informs surveillance efforts. infected individual, at a specific

< Used to calculate quantities like R, R, ...

“ Ro~=141rS

% ...and hence in understanding herd immunity thresholds and more.

How generation intervals shape the relationship
between growth rates and reproductive numbers
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https://royalsocietypublishing.org/doi/10.1098/rspb.2006.3754
https://royalsocietypublishing.org/doi/10.1098/rspb.2006.3754

It’s also related to other disease intervals
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Most existing methods for serial interval estimation
assume direct observation of transmission pairs
(infectors & infectees)

pairs of cases which
(A 5 -

are assumed to represent direct
transmission

symptoms

A &— ® 2. This provides of
| symptoms . .
B : ® = o the serial interval
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Serial interval
1 Serial Interval of
: g ° COVID-19 among Publicly
Of the Serlal ge Reported Confirmed Cases

Du et al. (2020) Emerging
Infectious Diseases

interval given this observed data
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258488/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258488/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258488/

Systematic Review and Meta-analysis of Serial Intervals for COVID-19

Xu et al (2023) estimate a mean serial
interval from ancestral lineage
SARS-CoV-2 of 4.82 days (95% CI 4.5 -
5.14)

All included studies (98) use contact
data, the majority of which assume direct
contact-traced pairs and many of which
were household pairs.
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https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-023-03070-8

How we got thinking about serial intervals...

By collating contact data from outbreaks in
Singapore and Tianjin, we estimated the amount of
of COVID-19.

Number of Cases

This requires estimation of both the serial interval
and incubation period.

Evidence for transmission of COVID-19 prior to
symptom onset. Tindale, Stockdale et al (2020) eLife infected infectious  recovered
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Incubation period

“About 40% to 80% of the novel
coronavirus transmission occurs two We developed a new approach for est|mat|ng

fo jour days before an infected person ;-\ \hation periods whilst taking into account

has symptoms : .
that observed pairs may not represent direct
transmission )


https://elifesciences.org/articles/57149
https://elifesciences.org/articles/57149

Contact tracing approaches require detailed personal
data, and are often limited to household studies

This motivated a new genomic approach:

« Use pathogen whole genome sequence data as a proxy for contact data

« Use in broader clusters than e.g. households

« Incorporate possibility of missing cases

« Fast and cluster-specific estimates: track the serial interval through time
and under different settings or variants



Estimating serial intervals with genomic data

Suppose we have a set of case clusters (perhaps genomic clusters, or clusters
associated with e.g. schools, hospitals) from an outbreak of infectious disease.

We wish to
Cluster 1 8
A D
E
B C e

Cluster 3 5

O

We know each case’s symptom onset time and pathogen sequence, but we don’t

know who infected whom.

Cluster 2
H

I
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Whole genome sequences as a proxy for contact data

The main idea: As with the other methods in this course, differences in the
sequences tell us how closely related people’s infections are and therefore
who might have infected whom.

Case A: ATCGGTATCAGTCA
Case B: ATCAGTATCAGTCA

However, since we want to work with broad clusters where we don’t
necessarily sample a large proportion of cases, we need to consider

1. There may be large uncertainty in who infected whom
2. Inferred pairs (infector & infectee) might not represent direct
transmission
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Take uncertainty in who infected whom into account, by
sampling feasible transmission networks

Pairs (i,j) in the same cluster, with Cluster 1 &
closely related sequences & realistic A D
timing, where infector i showed symptoms 2
first. B C E
1. Difference in symptom | case i: ATCGGTATCA ,
Ons.et C.iate sT . Case j: ATCAGTATCA Transmission cloud
2. Pairwise genomic of all feasible pairs
distance < G -
-'\.i: ’,:l : e
Built from the plausible pairs, by tsraa?:sprLeisAs{ion

networks from cloud

sampling an infector for each infectee.



Take uncertainty in who infected whom into account, by
sampling feasible transmission networks

Incorporate uncertainty by
sampling a set of networks:

X N

We estimate the serial interval in each network
independently —and then
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Estimate the serial interval distribution, taking indirect
transmission into account

To take under-sampling into account, we consider that, for every
infector-infectee pair (A, B) in every sampled network, transmission may

have been:
ii ii Inspired by:

Serial Intervals of

—) - — Respiratory Infectious
Diseases: A Systematic

Review and Analysis
@ @

Vink et al. (2014)
We fit a mixture model to incorporate this idea...
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https://academic.oup.com/aje/article/180/9/865/2739204
https://academic.oup.com/aje/article/180/9/865/2739204
https://academic.oup.com/aje/article/180/9/865/2739204
https://academic.oup.com/aje/article/180/9/865/2739204

Estimate the serial interval distribution: possible pathways

True serial interval distribution ~ I'(u, o)
o O
Observed time difference between A & B, T, ~ I'(1, 0)

(andiind

T, =sum of m + 1 serial intervals, m ~ Geo()
~Compound Geometric Gamma(u, o, 7) —

Proportion w of pairs
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Estimate the serial interval distribution: possible pathways

True serial interval distribution ~ I'(u, o)
o O
Observed time difference between A & B, T, ~ I'(, 0)

® ®
— — Probability of
< m sampling an

infectee

T, =sum of m + 1 serial intervals, m ~ Geo()
~Compound Geometric Gamma(u, o, ) —

Proportion w of pairs
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* A note on gamma difference distributions, Bernhard Klar,

Estimate the serial interval distribution: possible pathways

o .
T, 1S the strictly non-negative difference of two
I'(i, o) distributions

infected symptoms recovered

sf¢ =symptom
> onset
A G T A—
B ~————= o
— _> HI

time T, ~Folded Gamma difference( s, o)

|

Proportion 1-w of pairs
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https://www.tandfonline.com/doi/abs/10.1080/00949655.2014.996566

Estimate the serial interval distribution: mixture model taking

possible pathways into account
We combine these possible transmission pathways into a mixture model
with log-likelihood:

l(luv o,n, UJ‘D) = Z:l log[WfCGG (Tak,bk ’/1/7 ag, 7T) 5 (1 S u”)fFGD (Tak,bk ’/’L O-)]

Instead of maximising this directly, we incorporate Beta distributed priors
for w and m, and perform maximum a posteriori (MAP) estimation. We
calculate the MAP for each sampled network, and then average over all
networks

Our confidence intervals need to take into
account uncertainty in each network, as well as
uncertainty when combining across networks: For cluster ¢ and each network 7

Var(ji.) = E, (sé(/l(ijk)‘Z) + Var, (/l,;.,m).
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A schematic view of the method
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Sample transmission
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Application: COVID-19 clusters in Victoria, Australia

Wave 1
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Cluster-specific serial intervals: in line with published
estimates, with some variation by cluster
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Using a larger range of 2nd wave clusters, we can
compare across different exposure settings

Estimates of the mean range from 2 to 9.5 days (compared to standard
estimates ~5 days)

Serial Interval Mean
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Using a larger range of 2nd wave clusters, we can
compare across different exposure settings

Estimates of mean serial interval by cluster site type

9k
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iiif%

Mean serial interval

- Aged Care
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2 3 4

Cluster site type
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Estimates of Rt are (sometimes) impacted by the
underlying serial interval distribution

Wave 1
Cluster A1. Size 29 Cluster A2. Size 61 Cluster A3. Size 21 Cluster A4. Size 28
20 %1 75
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https://www.medrxiv.org/content/10.1101/2020.03.03.20028423v3

In conclusion

« It would have been difficult to do full transmission reconstruction
(outbreaker, TransPhylo) for the Victoria data:

- Even still, pathogen sequence data can help us learn about aspects of
transmission. Here, we estimate serial intervals, without the need for
contact studies

- Broad population sequencing makes it easier to compare serial intervals
across time, space, setting, or Variants of Concern (VOC)
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Genomic epi at different scales

Time

Popuiation size of location

Intensity and direction of movements
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Virus diversity
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phylogenetics, scale methods from
phylodynamics, this course

thlogeography Graphics from Progress and challenges in virus genomic epidemiology



https://www.cell.com/trends/parasitology/fulltext/S1471-4922(21)00205-1
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Methods
comparison and
opportunities



Methods comparison (these are abilities, not quality)

Method
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Some recent methods and studies

Ke and Vikalo,
Graph-Based
Reconstruction and
Analysis of Disease
Transmission Networks
Using Viral Genomic Data,
Journal of Computational
Biology (2023)

Clustering + transmission
reconstruction within
clusters via graphs and
host importance scores

Lindsey et al.

Characterising
within-hospital SARS-CoV-2
transmission events using
epidemiological and viral
genomic data across two
pandemic waves, Nature
Communications (2022).

Adapted Outbreaker?2 for

hospital settings. Includes
ward occupancy data

Junhang Pan et al,

TransFlow: a Snakemake
workflow for transmission
analysis of Mycobacterium
tuberculosis whole-genome
sequencing data,
Bioinformatics (2023)

Pipeline from raw
sequences to clustering to
transmission
reconstruction, combining
various existing methods

Van der Roest et al, A
Bayesian inference method
to estimate transmission
trees with multiple
introductions; applied to
SARS-CoV-2 in Dutch mink
farms, PLoS Comp Bio
(2023)

Extension to Phybreak

allowing for multiple

pathogen introductions



Areas that need more methods

Intermediate sampling: between 10-40%

uncertainty
environmental source

Plasmids and bacteria together

Variable sampling:
e over time (in principle ok in TransPhylo
implemention underway)
e across a dataset

unsampled host

Reinfections and coinfections

Environmental transmission |a rger dataSEtS

Incorporate more epidemiological data

Connect to forecasting phylogeny
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Genomic technologies have led to tremendous gains in understand
how pathogens function, evolve and interact. Pathogen diversity is
measurable at high precision and resolution, in part because over tt
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Questions and
discussion



