Research Forefronts: Estimation of serial intervals using pathogen genomic data

with an application to COVID-19

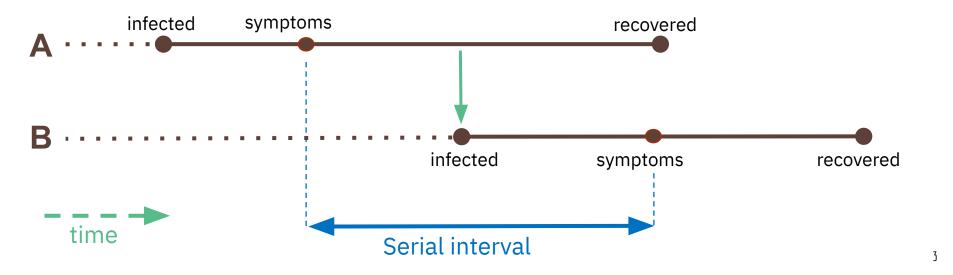
Sometimes, our data might not be sufficient to fully reconstruct the transmission tree

But that doesn't mean there's nothing we can learn... We developed a method to estimate **serial intervals** using genomic data.

What is the serial interval?

Definition of the serial interval = length of time between successive cases in a chain of transmission

> = length of time between symptom onset in an infector and infectee



Why is the serial interval important?

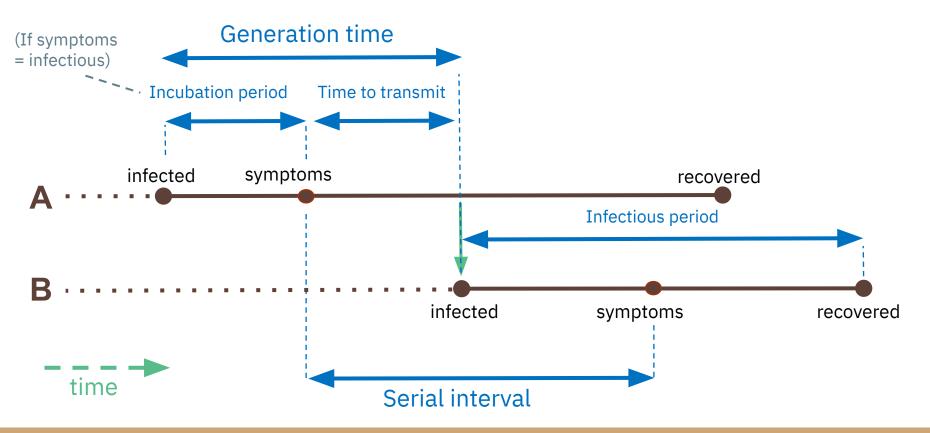
- Tells us about the speed of transmission...
- ...this informs surveillance efforts.
- Used to calculate quantities like R₀, R_t ...

R₀ = the average number of cases caused by a single infected individual, in a wholly susceptible population R_t = the average number of cases caused by a single infected individual, at a specific time t

- * $R_0 pprox 1 + rS$ Epidemic exponential growth rate x serial interval *
- ...and hence in understanding herd immunity thresholds and more.

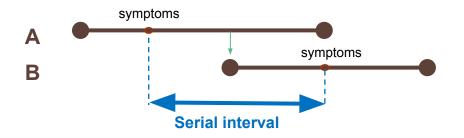
* <u>How generation intervals shape the relationship</u> between growth rates and reproductive numbers, Wallinga and Lipsitch (2006) *Proceedings of the Royal Societ*

It's also related to other disease intervals

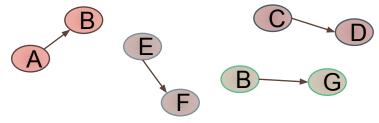


Most existing methods for serial interval estimation assume direct observation of transmission pairs (infectors & infectees)

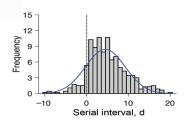
1. Contact trace pairs of cases which are assumed to represent direct transmission



3. Parametric estimation of the serial interval given this observed data



2. This provides **direct observations** of the serial interval



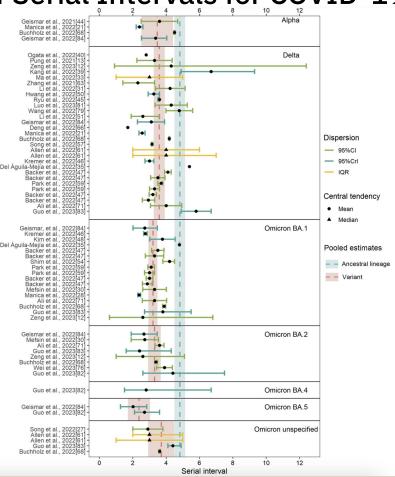
Serial Interval of COVID-19 among Publicly Reported Confirmed Cases Du et al. (2020) Emerging Infectious Diseases

Systematic Review and Meta-analysis of Serial Intervals for COVID-19

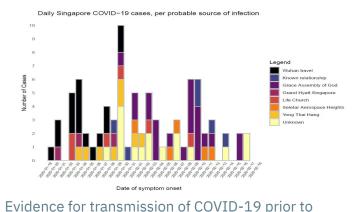
<u>Xu et al (2023)</u> estimate a mean serial interval from ancestral lineage SARS-CoV-2 of **4.82 days (95% CI 4.5 -5.14)**

All included studies (98) use contact

data, the majority of which assume direct contact-traced pairs and many of which were household pairs.



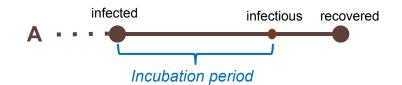
How we got thinking about serial intervals...



symptom onset. Tindale, Stockdale et al (2020) eLife

By collating contact data from outbreaks in Singapore and Tianjin, we estimated the amount of **pre-symptomatic transmission** of COVID-19.

This requires estimation of both the serial interval and incubation period.



"About 40% to 80% of the novel coronavirus transmission occurs two to four days before an infected person has symptoms"

We developed a new approach for estimating incubation periods whilst taking into account that observed pairs may not represent direct transmission

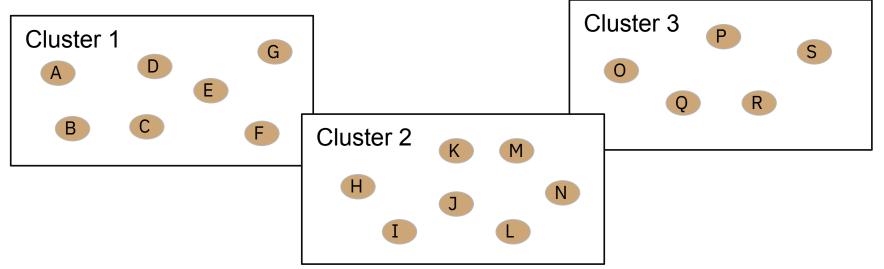
Contact tracing approaches require detailed personal data, and are often limited to household studies

This motivated a new genomic approach:

- Use pathogen whole genome sequence data as a proxy for contact data
- Use in broader clusters than e.g. households
- Incorporate possibility of missing cases
- Fast and cluster-specific estimates: track the serial interval through time and under different settings or variants

Estimating serial intervals with genomic data

Suppose we have a set of case clusters (perhaps genomic clusters, or clusters associated with e.g. schools, hospitals) from an outbreak of infectious disease. We wish to **estimate the serial interval in each cluster...**



We know each case's symptom onset time and pathogen sequence, but we don't know who infected whom.

Whole genome sequences as a proxy for contact data

The main idea: As with the other methods in this course, differences in the sequences tell us how closely related people's infections are and therefore who might have infected whom.

Case A: ATCGGTATCAGTCAG Case B: ATCAGTATCAGTCAG

However, since we want to work with broad clusters where we don't necessarily sample a large proportion of cases, we need to consider

- 1. There may be **large** uncertainty in who infected whom
- 2. Inferred pairs (infector & infectee) might not represent direct transmission

Take uncertainty in who infected whom into account, by sampling feasible transmission networks

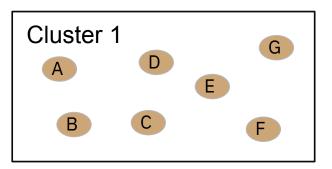
1. Identify all plausible transmission pairs: Pairs (*i*,*j*) in the same cluster, with closely related sequences & realistic timing, where infector *i* showed symptoms first.

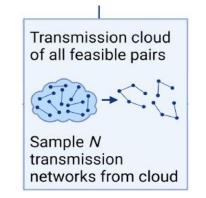
 Difference in symptom onset date ≤ T
 Pairwise genomic distance ≤ G

Case i: ATCGGTATCAG Case j: ATCAGTATCAG

2. Sample plausible transmission

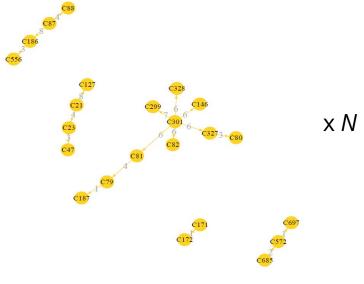
networks: Built from the plausible pairs, by sampling an infector for each infectee.





Take uncertainty in who infected whom into account, by sampling feasible transmission networks

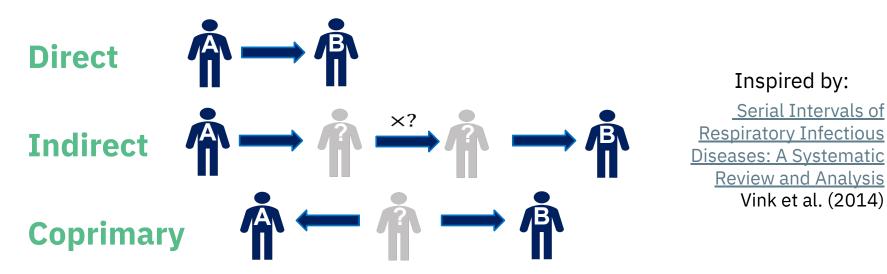
Incorporate uncertainty by sampling a set of networks:



We estimate the serial interval in each network independently – and then **average across networks**

Estimate the serial interval distribution, taking indirect transmission into account

To take under-sampling into account, we consider that, for every infector-infectee pair (A, B) in every sampled network, transmission may have been:



We fit a mixture model to incorporate this idea...

Estimate the serial interval distribution: possible pathways

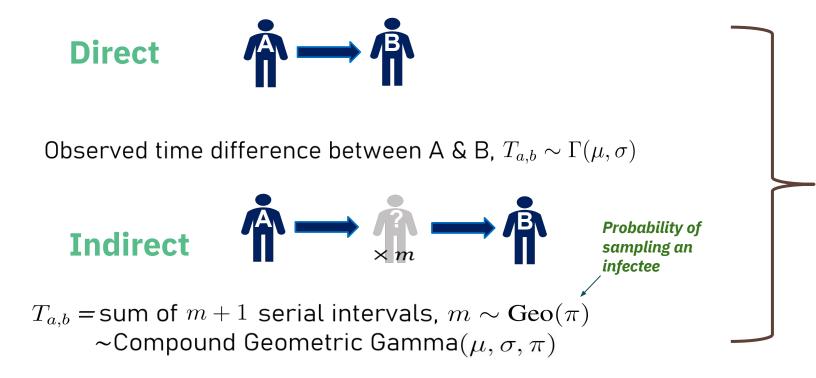
True serial interval distribution $\sim \Gamma(\mu,\sigma)$

Observed time difference between A & B, $T_{a,b} \sim \Gamma(\mu,\sigma)$

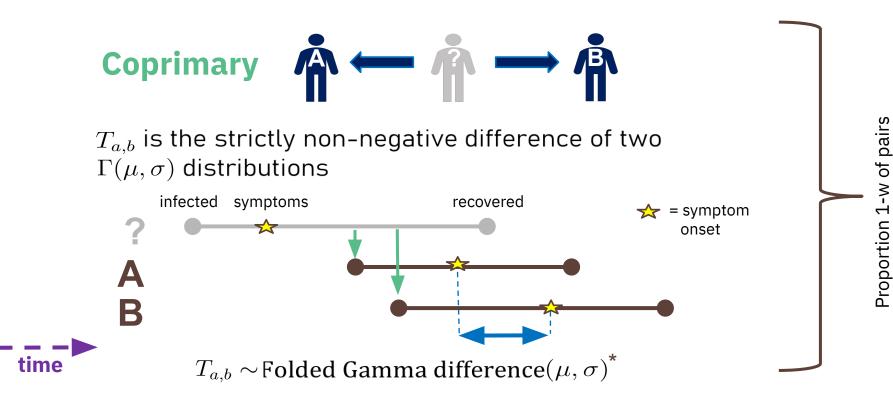
 $T_{a,b} = \text{sum of } m + 1 \text{ serial intervals, } m \sim \text{Geo}(\pi)$ ~Compound Geometric Gamma (μ, σ, π)

Estimate the serial interval distribution: possible pathways

True serial interval distribution $\sim \Gamma(\mu, \sigma)$



Estimate the serial interval distribution: possible pathways



Estimate the serial interval distribution: mixture model taking possible pathways into account

We combine these possible transmission pathways into a mixture model with log-likelihood:

$$l(\mu, \sigma, \pi, w | D) = \sum_{k=1}^{n} \log[wf_{CGG}(T_{a_k, b_k} | \mu, \sigma, \pi) + (1 - w)f_{FGD}(T_{a_k, b_k} | \mu, \sigma)]$$
Sum over all pairs in Direct or indirect Coprimary the network

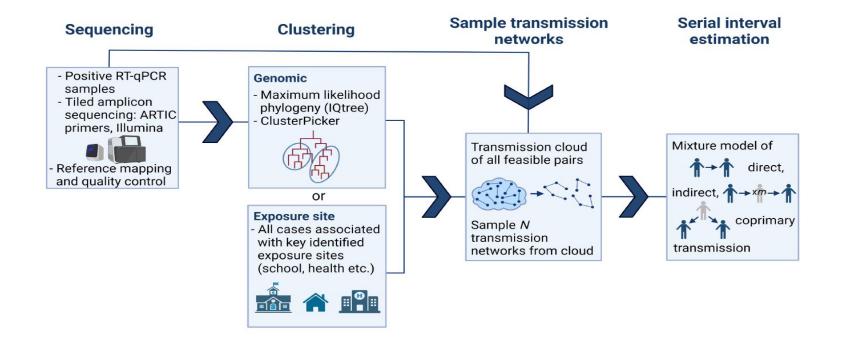
Instead of maximising this directly, we incorporate Beta distributed priors for w and π , and perform maximum a posteriori (MAP) estimation. We calculate the MAP for each sampled network, and then average over all networks

Our confidence intervals need to take into account uncertainty in each network, as well as uncertainty when combining across networks:

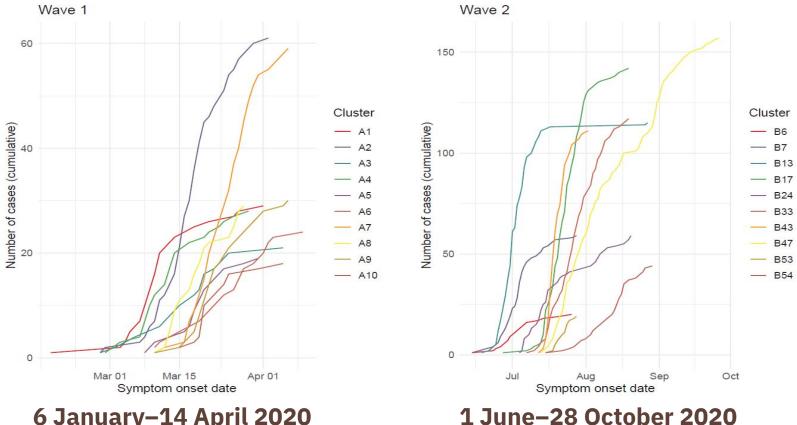
$$\hat{\operatorname{Var}}(\hat{\mu}_c) = \mathbb{E}_{\tau} \Big(\hat{\operatorname{se}}(\hat{\mu}_{c,\tau_k})^2 \Big) + \operatorname{Var}_{\tau} \Big(\hat{\mu}_{c,\tau_k} \Big).$$

For cluster c and each network au_k

A schematic view of the method

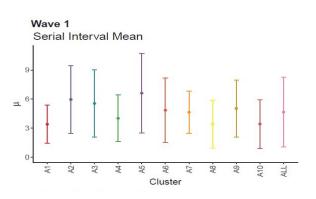


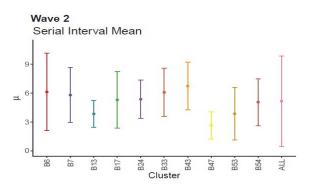
Application: COVID-19 clusters in Victoria, Australia



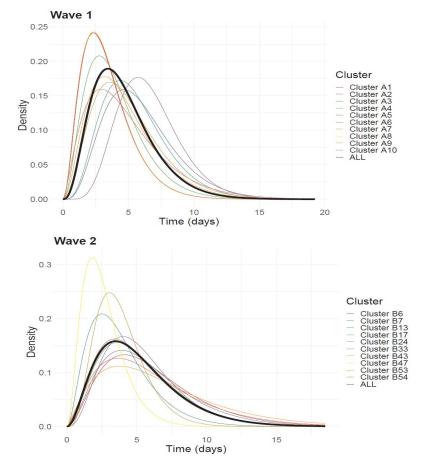
6 January-14 April 2020

Cluster-specific serial intervals: in line with published estimates, with some variation by cluster



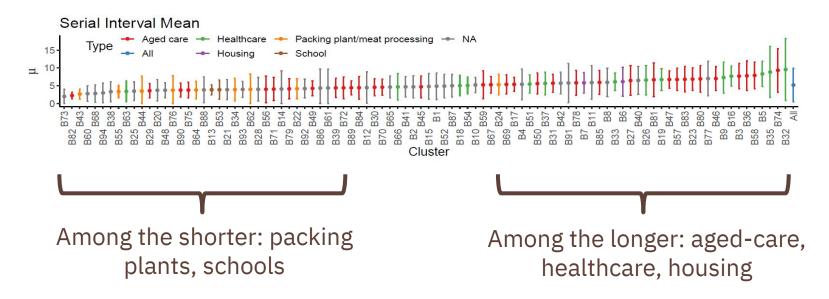


Context: Early published estimates ~5 days

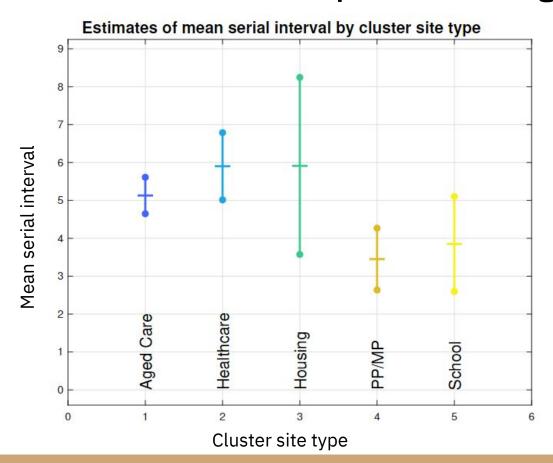


Using a larger range of 2nd wave clusters, we can compare across different exposure settings

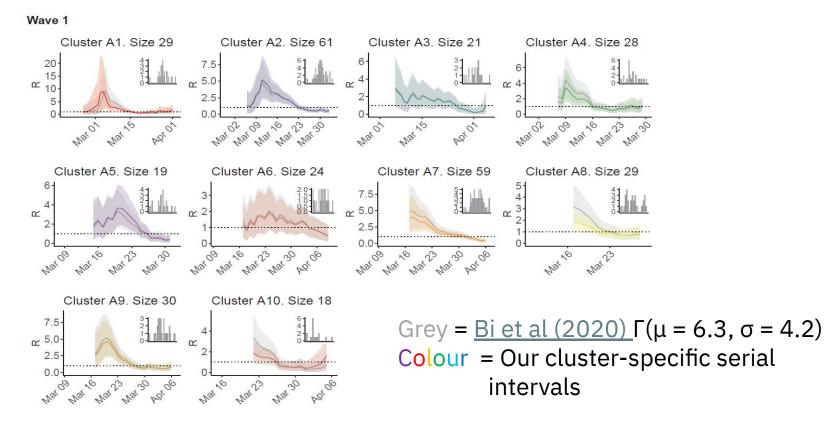
Estimates of the mean range from **2 to 9.5 days** (compared to standard estimates ~5 days)



Using a larger range of 2nd wave clusters, we can compare across different exposure settings



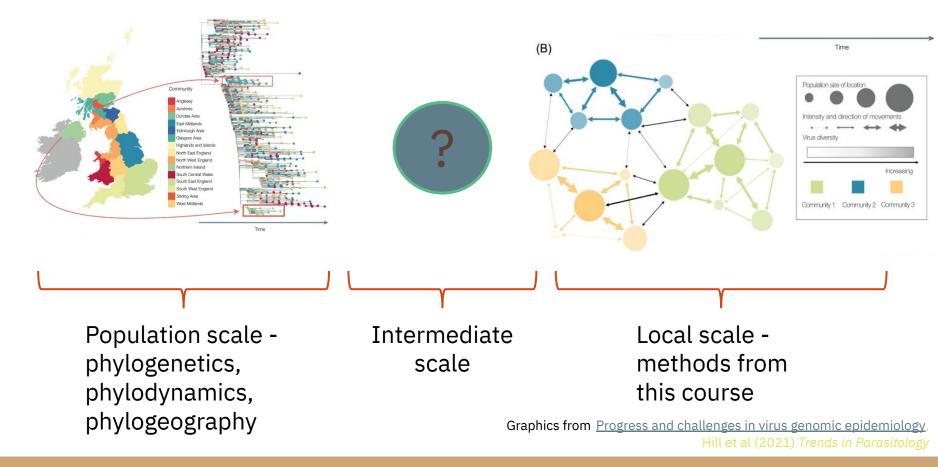
Estimates of *Rt* are (sometimes) impacted by the underlying serial interval distribution



In conclusion

- It would have been difficult to do full transmission reconstruction (outbreaker, TransPhylo) for the Victoria data: low diversity sequences, lots of missing cases (wave 2 particularly)
- Even still, pathogen sequence data can help us learn about aspects of transmission. Here, we estimate serial intervals, without the need for contact studies
- Broad population sequencing makes it easier to compare serial intervals across time, space, setting, or Variants of Concern (VOC)

Genomic epi at different scales



nature communications

Article

https://doi.org/10.1038/s41467-023-40544-y

Genomic epidemiology offers high resolution estimates of serial intervals for COVID-19

Received: 24 March 2022

Accepted: 31 July 2023

Published online: 10 August 2023

Jessica E. Stockdale $\mathbb{O}^1 \boxtimes$, Kurnia Susvitasari \mathbb{O}^1 , Paul Tupper¹, Benjamin Sobkowiak \mathbb{O}^1 , Nicola Mulberry¹, Anders Gonçalves da Silva^{2,4}, Anne E. Watt \mathbb{O}^2 , Norelle L. Sherry \mathbb{O}^2 , Corinna Minko³, Benjamin P. Howden \mathbb{O}^2 , Courtney R. Lane^{2,5} & Caroline Colijn^{1,5}

A method to estimate the serial interval distribution under partially-sampled data

Kurnia Susvitasari*, Paul Tupper, Jessica E. Stockdale, Caroline Colijn

Department of Mathematics, Simon Fraser University, Canada

Methods comparison and opportunities

Methods comparison (these are abilities, not quality)

Method	Unsampled hosts	Phylogeny vs pairs	Multiple sequences per host	Simultaneous phylogeny and transmission	Bottleneck >1	Environmental organism	Incorporate epidemiological data (beyond times of collection, infectious period)	
BEASTLIER	×	phylogeny			×	×	×	
TransPhylo		phylogeny	*	×	*	×	*	
Outbreaker 2		pairs	*	*	*	×	🔽 (readily)	
Phybreak	*	phylogeny	*		*	×	*	
SCOTTI	(limited)	phylogeny				🔽 (limited)	*	
BREATH		phylogeny	¥ (in progress)		×	×	×	

Some recent methods and studies

Ke and Vikalo, Graph-Based Reconstruction and Analysis of Disease Transmission Networks Using Viral Genomic Data, Journal of Computational Biology (2023) Lindsey et al. Characterising within-hospital SARS-CoV-2 transmission events using epidemiological and viral genomic data across two pandemic waves, Nature Communications (2022). Junhang Pan et al, TransFlow: a Snakemake workflow for transmission analysis of Mycobacterium tuberculosis whole-genome sequencing data, Bioinformatics (2023) Van der Roest et al, A Bayesian inference method to estimate transmission trees with multiple introductions; applied to SARS-CoV-2 in Dutch mink farms, PLoS Comp Bio (2023)

Clustering + transmission reconstruction within clusters via graphs and host importance scores

Adapted *Outbreaker2* for hospital settings. Includes ward occupancy data Pipeline from raw sequences to clustering to transmission reconstruction, combining various existing methods Extension to Phybreak allowing for multiple pathogen introductions

Areas that need more methods

Intermediate sampling: between 10-40%

Plasmids and bacteria together

Variable sampling:

- over time (in principle ok in TransPhylo implemention underway)
- across a dataset

Reinfections and coinfections

Environmental transmission

Incorporate more epidemiological data

Connect to forecasting

uncertainty environmental source variable sampling

host diversity unsampled host deep sequencing larger datasets intermediate sampling phylogeny

nature microbiology

Perspective

https://doi.org/10.1038/s41564-022-01233-6

The potential of genomics for infectious disease forecasting

Received: 1 March 2022	Jessica E. Stockdale 🛛 , Pengyu Liu 🕲 and Caroline Colijn 🛡 🖂	Da	ta	Model	Prediction	Outcomes
Accepted: 18 August 2022	^					
Published online: 20 October 2022	Genomic technologies have led to tremendous gains in understand	Seque	ences		Transmission	Intervention design
Check for updates	how pathogens function, evolve and interact. Pathogen diversity is measurable at high precision and resolution, in part because over th			Phylogenetic trees	6 C	Intervention design
		Typing		Evolution and selection	U	
	Aesolution	× ····	× ×	Ч		Vaccine design, resistance control
	_	4 %	e. P	Population genomics	Clade growth	
		Populati	on-level		Global trends	Effective and efficient deployment

Questions and discussion